A Parallel Im-
plementation
of Tensor

Multiplication

A Parallel Implementation of Tensor
Multiplication

Bryan Rasmussen

Los Alamos National Laboratory

30 November 2006

Goals & requirements

A Parallel Im-
plementation
of Tensor
Multiplication

To develop a parallel version of tensor multiplication with
reductions.

@ At a minimum, multiply two rank-4 tensors with two
reductions.

Introduction

@ Have potential for multiplying large tensors with
applications in computational chemistry.

@ Use memory efficiently.

@ Scale well.

Basic definition

A Parallel Im-
plementation

ok densor @ Tensor: Extension of the idea of a linear operator to
ultiplication
multi-linear algebra setting.

@ Useful for writing equations with respect to arbitrary
firEEEHE coordinate systems—many applications.

Just as we may write a linear operator as a matrix (in
finite-dimensional space),

A= (Aer Ae, - Aep),

we may also write tensors as multi-dimensional boxes of
numbers. Number of dimensions of box = rank of tensor, e.g.,

rank-4 tensor: ajjkn-

Notation

A Parallel Im-
plementation
of Tensor

Multiplication Multiplication like an outer product.

Cijkmnp = aijkbmnp

Introduction

Repeated indices = summation

Cijmn = aijkbmnk ~ Cijmn = E aijkbmnk-
k

Also known as tensor contraction, or reduction.
In general, if we are multiplying Cis.. « = 3ss.. 5 Dsx. 4,

(Rank ¢) = (Rank a) + (Rank b) - (2 x reductions).

Notation examples

A Parallel Im-
plementation
of Tensor

Multiplication Consider 3-D column vectors u, v, and matrices A, B.

3
@ Inner product: s = ujv; =3 7 ujv; = ulv

Intreelieitn @ Outer product: wj; = u;v;
vy Vv U1Vv3
Wijj = Ujvj = | U2V UzVp U2V3 | = UV
uszvy usvy U3Vv3
@ Matrix-vector multiplication: v; = a;;u;

3 a1vi + anpve + azv3
Vi = ajuj = E ajv; = | az1vi + axnvo + axvz | = Au
j=1 asivi + as vz + asvs

Notation examples (continued)

A Parallel Im-
plementation
of Tensor
Multiplication

@ Matrix-matrix multiplication: cj = a;;bjx

3

Introduction Cik = a,-jbjk = E a,-jbjk = AB =
Jj=1

ai b1 + aobn a1 bio + a12b2 a1 b1z + a1obos

+ a13bs1 + a1zbs2 + a13bs3
a21 b1y + axnboy a21 b1o + axbo a21 b1z + axn b3

+ ax3bs; + ax3bsn + a3 b33
as1bi1 + asabx as1bio + aza by as1 b1z + asabo3

+ aszbs; + aszbz + aszbss

Exercise: Construct ABT, u” Av, etc.

Application of interest

A Parallel Im-
plementation
of Tensor
Multiplication

Concentrate on ajjkr = bjjef Cter -

Actually, code works for

Waias...ambi1by...b, — ualaz...amqq...cp Vblbz...bnclc2...cp .
Strategy

@ Assume a k-index transformation:

M
Vitiy...ix = E : ZivjiZizj2 " " Zikjx
Jij2--Jk=1
e Call z the characteristic matrix.
@ Trade-off between storage and computation time.

Two ways to construct serial algorithm

A Parallel Im-
plementation
of Tensor
Multiplication

@ Our strategy: element-by-element multiplication.
- Easier to read and analyze.
- Easier to extend to arbitrary-rank, arbitrary-reduction.

@ Another strategy: Unwrap the tensors.

Serial

- Tensor operations become block-matrix multiplications.
- Can use BLAS to compute.

Implementation in C++

bryTensor class description

A Parallel Im-
plementation _
of Tensor

Multiplicati 0 o 5
MR Tensor Double-precision, not allocated until needed.

Char. matrix Double-precision, not allocated until needed.

Statistics Dimensions, ranks, tags, etc.

Serial Mods Cumulative products used for indexing.

| A

Operations

Load/resize Load tensor or characteristic matrix from file, double
* variable, etc. Resize necessary for parallel version.

Formation Form piece of tensor from characteristic matrix.

Product Overwrites current tensor with product of two others.
Arguments: pointers to tensors, # reductions.

Parallelization

A Parallel Im-
plementation M |t I H _

of Tensor u Ip ylng Walag...amblbg...b,, - Ualag...amclcz...cpVblbg...b,,clq...cp-
Multiplication

@ Each processor can hold one row of u, v and w.

@ Arow: u(d,:,:,...,:).
Paralle @ In index notation for rank-3 tensor: wpjy.

o If u and v have 128 rows each, then each processor must
be able hold 1/1283 ~ 1/(2.1 - 10°) of problem.

Divide rows of u among processors, then divide rows of v
among processors assigned to each row of u.

Notation: N, N, are rows of u, v, respectively; P is number of
processors.

A Parallel Im-
plementation
of Tensor
Multiplication

@ Each processor gets all of v.
@ Each processor gets one or more rows of u.

- If N, =10, and P = 4, then 2 processors would get 2 rows
and 2 processors would get 3 rows.

@ Start row of u assigned to processor n:

n|[Ny/P|+ min{n, (N, mod P)}
@ Number of rows of u assigned to processor n:

1 n< (N, modP)
0 otherwise

/P +

A Parallel Im-
plementation
of Tensor
Multiplication

- @ Each processor is assigned to one row of w.
Rasmuss

@ Each processor gets one or more rows of v.

- If N, =4, and P = 10, then 6 processors would get ~ 1/3
of v, and 4 processors would get ~ 1/2 of v.

Farele @ Processor n is assigned to following row of u:
n/(d+1) n<m(d+1)
row = —mld +1
m+ "mgﬂ n>m(d+1)

where m = (P mod N,), and d = |P/N,].

P >= N, (continued)

A Parallel Im- What piece of v does processor n get? Define
plementation
of Tensor
Multiplication

@ @: Number of processors on current row:

Q- d+1 n<m(d+1)
1 d n>m(d+1)

@ g: Rank of processor n in that list of processors

Parallel { nmod (d + 1) n<m(d+1)

- [n—m(d+1)]modd n>m(d+1)
@ Then the first row of v that processor n operates on is
q|N,/Q] + min{q, (N, mod Q)}

@ The number of rows of v that processor n operates on is

1 g < (N, mod Q)
0 otherwise

N,/Q] +{

A Parallel Im-
plementation
of Tensor
Multiplication

o J e | Lo | [eo [[o] []

Distribution, N, =6, N, =5, P =14

A Parallel Im-
plementation
of Tensor
Multiplication

]

J

SIS

=
=)
BB (B EeEl

ENENENEIEINEY

o] L] o] [o] [=] [=]

{

Implementation issues

A Parallel Im-
plementation
of Tensor
Multiplication

Consider two examples:

P = 1000, N, = 1000

@ Each processor is assigned to 1 row of u

@ Each processor operates on all of v.

4

P =1999, N, = 1000

@ Each processor is assigned to 1 row of u.

Parallel

@ Each of 1998 processors operates on ~ 1/2 of v.

@ One processor operates on all of v.

We have basically doubled the number of processors, but
computation time is the same! Moral of the story:

o If P> N,, increase P by multiples of N,,.
o If P < N, increase P by integer divisions of N,,.

Timing, t =y x32x32x32, v=y x 32 x 32 x 32

A Parallel Im- Exponents ~ 1.99

plementation
of Tensor
Multiplication

256 Processors

Results

Time (s)

32 Processors

512 Processors

Rows of uand v

Timing, u =y x 16 x 16 x 16, v =y x 16 x 16 x 16

A Parallel Im- Exponents ~ 1.99 and 1.11
plementation
of Tensor

Multiplication
10°F
16\
16, not
mem. eff
Results o)
@
E 64, not
101 mem. eff
\ 256
512
10 F
.

10°
Rows of uand v

A Parallel Im-
plementation
of Tensor
Multiplication

Results

Timing, u =y x 16 x 16 x 16, v =y x 16 x 16 x 16

Processors

Timing, t =y x32x32x32, v=y x 32 x 32 x 32

A Parallel Im-
plementation
of Tensor
Multiplication

Results

Processors

Comments

A Parallel Im-
plementation
of Tensor
Multiplication

Current algorithm

Pretty good memory savings.

@ Pretty good general algorithm.
@ Lots of useful serial and MPI functions.
o

Application will dominate storage/communication.
e - What do we do with this beast?

and future
work

Divergent behavior between memory-efficient mode and
non-memory efficient mode when P > N,,.

o All in all, scales very well.

Comments (continued)

A Parallel Im-
plementation
of Tensor

Multiplication Future Work

@ Look at symmetry in k-index transformation:

M
Vithy.oix. = E Zij1Zijy " " Zikjk
Jij2- k=1
Comments @ Unwrap tensors and use the BLAS?
and future
work o Consider more optimal splitting strategy.

@ Augment MPI calls with threads for better serial
performance.

o Extend to different orders of indices.

	Introduction
	Strategy
	Serial
	Parallel

	Results
	Comments and future work

